Diffusion characteristics of a T-type microchannel with different configurations and inlet angles.

نویسندگان

  • Jun Yang
  • Xitian Pi
  • Liguo Zhang
  • Xiangshao Liu
  • Jing Yang
  • Yi Cao
  • Wenxian Zhang
  • Xiaolin Zheng
چکیده

A series of symmetrical and asymmetrical microfluidic T-sensors with different inlet angles were fabricated to study the mixing characteristics of a T-type microstructure for generating concentration gradient. Computational fluid dynamics (CFD) simulations showed that the concentration gradient, transition zone and diffusion length were different for various configurations and inlet angles. Quick mix and sharp concentration gradient occurred in the asymmetrical structure with large inlet angle. The observed concentration gradients in the fabricated microchannel were consistent with the theoretical prediction. In this microstructure, stagnant zone and z-direction diffusion also affected the concentration gradient. Based on the simulation results, the microfluidic structure was optimized to generate desired concentration gradient for a cell-based study.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three dimensional numerical study on a trapezoidal microchannel heat sink with different inlet/outlet arrangements utilizing variable properties nanofluid

Nowadays, microchannels as closed circuits channels for fluid flow and heat removal are an integral part of the silicon-based electronic microsystems. Most of previous numerical studies on microchannel heat sinks (MCHS) have been performed for a two-dimensional domain using constant properties of the working fluid. In this study, laminar fluid flow and heat transfer of variable properties Al2O3...

متن کامل

Study of MHD Second Grade Flow through a Porous Microchannel under the Dual-Phase-Lag Heat and Mass Transfer Model

A semi-analytical investigation has been carried out to analyze unsteady MHD second-grade flow under the Dual-Phase-Lag (DPL) heat and mass transfer model in a vertical microchannel filled with porous material. Diffusion thermo (Dufour) effects and homogenous chemical reaction are considered as well. The governing partial differential equations are solved by using the Laplace transform method w...

متن کامل

EFFECTS OF INLET PORT DESIGN FACTORS ON COMBUSTION CHARACTERISTICS AND EMISSION LEVELS OF DIESEL ENGINES

Intake system design as well as inlet ports and valves configuration is of paramount importance in the optimal performance of internal combustion engines. In the present study, the effect of inlet ports design is investigated on OM-457LA diesel engine by using a CFD analysis and the AVL-Fire code as well. A thermodynamic model of the whole engine equipped with a turbocharger and an intercooler ...

متن کامل

Numerical Simulation of Turbulent Subsonic Compressible Flow through Rectangular Microchannel

In this study, turbulent compressible gas flow in a rectangular micro-channel is numerically investigated. The gas flow assumed to be in the subsonic regime up to Mach number about 0.7. Five low and high Reynolds number RANS turbulence models are used for modeling the turbulent flow. Two types of mesh are generated depending on the employed turbulence model. The computations are performed for R...

متن کامل

Microfluidic extraction of tannic acid from Quercus leaves

In this study, extraction of tannic acid using microchannel was investigated. Affective parameters were optimized. Different solvents including buthanol, ethylacetate and n-hexane as organic phase, methanol, propanol, ethanol and water as aqueous phase investigated. Microchannels with different confluence angles and diameters were examined. Microchannels with different confluence angles and dia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Analytical sciences : the international journal of the Japan Society for Analytical Chemistry

دوره 23 6  شماره 

صفحات  -

تاریخ انتشار 2007